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Abstract

Group-theoretic methods are used to impose symmetry restrictions on the form of the constitutive equations of
linear theory of elastic dielectrics. A particular case of transversely isotropic elastic dielectrics which belong to the
Dg(622) crystal class and are governed by a group of 12 symmetry transformations and 6 irreducible representations
associated with each element is discussed in detail. The product table is constructed and used to derive the basic
quantities associated with the irreducible representations. Schur’s lemma is applied to the constitutive equations and
non-vanishing constants are determined from the linear algebraic systems and presented in tables. The number of
independent material constants is reduced from 171 to 25. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Construction of constitutive equations of linear and non-linear electromagnetic—elastic crystals which
remain invariant under a group of symmetry transformations has been an active area of research over the
past few years. Finite group representations and various other procedures for determining the forms of
polynomial constitutive expressions which describe the response of anisotropic materials to external forces
have been developed by Voigt (1910), Nye (1986), Birss (1964), Smith and Rivlin (1958), Fumi (1952),
Feischi and Fumi (1953). The use of continuous groups to construct integrity bases for isotropic materials is
extensively discussed in Spencer (1971). Smith and Kiral (1978) based their approach on invariance and
Schur’s lemma to reduce coefficients in constitutive equations. The decomposition of magnetic material
tensors into basic symmetry types which form the carrier spaces of irreducible representations associated
with the group defining material symmetry is treated in Mert and Kiral (1977) and Kiral and Eringen
(1990). For the two phases of KDP for which the material symmetry changes as the temperature in-
creases through the ‘Curie point’, the constitutive equations are derived in Chowdhury and Glockner
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(1982). Xu et al. (1987) have developed a computer aided procedure for the generation of constitutive
expressions invariant under symmetry groups and cover the 32 conventional crystal classes.

In this paper, the methods of group representations theory and Schur’s lemma are applied to derive the
constitutive equations of transversely isotropic elastic dielectrics which belong to the Ds(622) crystal class.
An indexing scheme is used and the basic constitutive equations for the general linear elastic dielectrics are
written in matrix form which contain six components each of stress and strain tensors (o;;,S;;), three
components of each of the electric and polarization vectors (; £;, ), and nine components of each of the
electric and polarization gradient tensors (g;, IT;;) involving 171 independent constants. The symmetry
group for the D4(622) crystal class of transversely isotropic elastic dielectrics consists of twelve 3 x 3 or-
thogonal matrices and six irreducible representations associated with each of the elements. The product
table is constructed and used in the decomposition of the strain tensor, the polarization vector and the
polarization gradient tensor into linear combinations of their components which form the carrier spaces of
irreducible representations. The invariance of the constitutive equations under the group of symmetry
transformations and application of Schur’s lemma lead to systems of linear algebraic equations in material
constants which are solved and non-vanishing constants are determined. The number of independent
constants is reduced from 171 to 25.

2. Basic equations

For a homogeneous elastic dielectric crystal which is bounded by a surface S and occupies a region V of
a rectangular coordinate system, the general system of linear constitutive equations for the components of
stress tensor a;;, the local electric vector ( E; and electric tensor ¢; are given by Mindlin (1968)

6ij = CijtrSii + SrijPe + il (2.1)
—LEi = farSu + auPr + jilly (2.2)
&;j = dijrsSi + JrijPe + bl (2.3)

where §;; are the components of the symmetric strain tensor, P, are the components of polarization vector,
and II;; = P; are the components of polarization gradient tensor. The coefficient tensors c;jus, aij, bijir, fiji
Jix and dy;, are the constant elastic and dielectric tensors.

We use the abbreviated notation and express the components of tensors o;;, S;, I1;; and ¢; as vectors
which are written as

t t
6 = [0117022,033702370317012] , S= [S117S227S33752373317512]

t
€= [811762278337823,632,8317813,6127821]

M = [T\, Iy, 33, o, M, My, i3, 1o, ]! (2.4)

where the superscript ‘t” denotes the transpose of the row vector. The scheme for indexing the coefficient
tensors in which a pair of indices ij or k/ is replaced by a single index is indicated in Appendix A.
The system of constitutive equations, Egs. (2.1)—-(2.3) can now be written in the matrix form as

f' d

(6e1) (066 =

—E a_j

(351) = | Bx6)(3x3)3x9) (351) (2.5)
& i b ||

Ox1) (9%6)(9x3)9x9) | L (9x1)
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where the numbers in parentheses below the matrix indicate the order of the matrix. For an elastic di-
electric, the total number of independent material constants given by matrices ¢, a, b, j, d, f equals 171.
Let the symmetry properties of a given crystal class be defined by the set of 3 x 3 orthogonal matrices

A =1=[5,], Ay=[4D],..., Ay =AY (2.6)

The symmetry transformations Ax (K =1,2,...,N) carrgf the components of the unit vectors {e;,e,, e;} of
K)

a rectangular coordinate system into unit vectors {e&K), e, egK) } and the components of the tensors S;;, P,

I1;; are transformed as

o) =4Pe;, P =aPp, (2.7)
S0 = ANANS,,, 0 =4840, (K=1,2,...,N) (2.8)

By listing the components of the tensors in the frames of reference eX) and e according to the notation in
Eq. (2.4) and using Eqs. (2.7) and (2.8), we can construct matrices T5®, TP®) TT&) (k = 1.2 ... N) of
orders (6 x 6), (3 x 3) and (9 x 9) respectively, such that

(6",8W) =T*®(e,8), (LEW,PX) =T (EP)

)

e M0y =T (e,11), (K=1,2,...,N) (2.9)

The constitutive equations Eq. (2.5) remain invariant under the group of symmetry transformations
{A} ={A,Ay,..., Ay} if

o'x) ¢ f d'][s®
“E® | =|f a jl||P®]| K=12,....N) (2.10)
£®) d iy b &«

From Eqgs. (2.5), (2.9) and (2.10), the invariance of the constitutive equations leads to the following re-
strictions on the material coefficient matrices

™ . : c f d c f a)[T® . -
K . f a j|=|f a j ) TPK), (K=1,2,...,N)
TV® | |d § b d i bl . T/K)

(2.11)
where -’ denotes the zero matrix.

Let {I' I(K)}(i =1,2,3,...,r) (K=1,2,...,N) be the r inequivalent irreducible representations associated
with the Ay (K =1,2,...,N) of the crystallographic group {A}. The basic quantities U},Us,U;,...;
ur,ur,uyg, . s Ul Ul UYL are the linear combination of the components of the vectors S, P, IT and
are said to be the carrier spaces of the irreducible representations of the group. These are determined from
the formula Lomont (1959).

N
Uf=>"Tr*rfgr, (R=S,P ) (2.12)
K=1

An alternative procedure for finding basic quantities is based on the product tables and is described in Xu
et al. (1987). The matrices Q°, Q”, Q" can be easily constructed from the basic quantities such that the
vectors

UF=Q*R (R=S,P 1) (2.13)
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list the basic quantities in the order of the irreducible representations. It has been observed (Lomont, 1959)
that the matrices QF reduce the matrices QRTRU()Q_IR(R = S, P, II) to the direct sum of irreducible rep-
resentations of Ag, the number of its occurrence is given by the formula (Lomont, 1959)

N
o' (I)) = %Ztr(TR(K))tr(F](.K)) (2.14)
K=1

where the suffix tr before the matrix stands for its trace.
Schur’s lemma states that

1. If I'* is an irreducible representation of dimension n of group G consisting of matrices A, As, ..., Ay
and if an n x n matrix M commutes with each of the matrices I'%, i.e

"M=Mr¢ (Kk=1,...,N)

then M = AI, where 1 is a constant and I is the » x n identity matrix.
2. If I'f and I'§ are two irreducible representations of dimensions n and m respectively of the group G and
if there is a n x m matrix M such that

rMM=Mrf (K=1,...,N)
then M must be a zero matrix or n = m with M a non-singular matrix.
The non-vanishing material constants in the constitutive equations are determined by using the

invariance conditions Eq. (2.11), the matrices Q" associated with the basic quantities and the Schur’s
lemma.

3. Basic quantities for the Dg(622) class

Dielectrics subjected to electric voltage at high temperature are known to become transversely isotropic
(Mason, 1966). In this section, we give in detail the procedure for the construction of constitutive equations
of transversely isotropic elastic dielectrics which belong to the Dg(622) crystal class.

The matrices comprising the symmetry group of this crystal class are given by Kiral and Smith (1974)

e S -y -
Ar=1|- 1 |, A=|_¥ _1 , A= ﬁ _1L ],
. 1 2 2 1 2
:_1 ] rL V3 1 ﬁ
2 2 2 2
Ay=1| - =1 |, As=|8 1 {ﬁ 1 ,
) 1 2 2 2 2
:1 i - L v o L (3.1)
2 2 2
A= -1 |, A=|¥ 1 [ e |,
2 2 2
I —1] |- i ~1
-1 . . 1 _\V3 1 i
2 2 2 2
Ay = 1 _'1 , A= —§ -1 -1 , Ap = ? -1 -1

There are six inequivalent irreducible representations (Kiral and Smith, 1974) I'f(i = 1-6, K = 1-12)
associated with the group and are of degree one and two as listed in Table 1.
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Table 1
Irreducible representations of D(622) class
A] Az A3 A4 A5 A6 A7 AS A9 AlO All AIZ
I, 1 1 1 1 1 1 1 1 1 1 1 1
I, 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
I3 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1
r, 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1
Is E A B —-E —A -B F G H —F -G —-H
I's E A B E A B -F -G -H -F -G -H
E, A, B, F, G, H are 2 x 2 matrices.
In Table 1
1 0 _1 ¥ _l _\¥
E = A= 2 2 B— 2 2
0 1) _vi 1) Vi1
2 2 2 2
1 0 _1 3 _1 _\3
F= G — 2 2 H= 2 2
[0 -1 ] ’ Vi _v3 1
2 2 2 2

The representations T?*) (R =S, P,II) which give the transformation properties of vectors S, P, IT under
the group {A} can be determined from Egs. (2.7)—(2.9).

The Product Table: Let

r,
I
I;
r,

F5Z

Fé:

iambn
tay, by
azy, by

L a4y, b4y

I:bSI
bSZ

|:b61
b62

|
|

denote quantities whose transformation properties under Dg(622) crystal class are defined by I'* (i = 1-6,
K=1,...,12). We consider 64 products aj1bi1,...,aanbs of the quantities appearing in Eq. (3.2). The
linear combinations of these products may be split into 44 sets as follows:

I,
I,
I
Iy

r

w

I's

. |:allb61:| [
“lanbe |

sanbyy, ayby,
sanby, ayby,
sanbsi, azby,
s anbar, anby,

. |:allb51:| [
“lanbs |

as1be>
L —aybe 1

as:bs

L —as by ]

az by, asba,
azbay, asbs,
ar bay, asby,
anbsi, az by,

051511} {
asybi ’

N

N
1

ae2b4
__a61b41 ]

61bll:| |:
62b11 ’

as1bs

_—a41b51 ]

abs

a

QW

asybg
)
L —asiby

an bs ]’ {

asibsi + as:bsy, as1be) + agbe:
asibsy; — as;bsy, agibey — agrbe
asibey — asxbei, agibs) — agrbs
asibg + as:bey, asibsi + agbs;

asyby } [ az1ber } [ aexb31 ]
—as1byy ’ —az1be ’ —ae1b31 ’
[asibe, + a52b61:| [delbsz + a62b51:|
_61511961 — asybey ’

lb62 :| |:
21b6l ’

(3.3)

ag1bs) — agrbs:

aerbs az bs;
b b
—ae1ba1 —az bs

{61511752 + as)bs ] {amb& + agbe }

asibsi — asybs; as1be1 — asxber
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Table 2
Carrier spaces of the irreducible representations of D(622) class
S P 11
I S33; 811+ 52 0 I35 yy + Iy
I 0 P, I, — 11
I's [S23, =Si3]" [P, P]' (T3, — 3], [IT3, —1T5]
I's (2812, 811 — S’ 0 (1 + Iy, I — ]

The transformation properties of these products are defined by I'; (i = 1-6). It may be verified from
expressions (3.2) and (3.3) that

[aniby] = I} [anbn] (3.4)
[a§1b§2 + af,bg, ] K {aslbsz + asybg ] 35)

K 1K K 1K
as bg; — as,bg, asibe1 — as;be;

The other product combinations can be verified in a similar manner.

We use the product table (3.3) to construct the basic quantities which are the carrier spaces of the ir-
reducible representations. The components of an absolute vector v = [v}, v5, v3] under the Dg(622) class
transform according to the rule (Kiral and Smith, 1974)

Fz:l)3; Fsl[U],Uz]t
The decomposition of the nine components of the second order non-symmetric tensor I1;; = u;v; can be
derived from the product table by assuming

uy = azi, U3 =ba, [ur,un] =lasi,as], [vi,va] = [bsi,bs)] (3.6)

and all other a and b are assumed to vanish. The decomposition for the symmetric tensor S;; can be derived
by assuming S;; = v;v;. The irreducible representations and the associated basic quantities are listed in
Table 2.

4. Reduction of constitutive coefficients by Schur’s lemma
From Eq. (2.13) and Table 2 for the basic quantities and the order of components in vectors R and U¥,

we construct the matrices Q® (R = S, P, IT). These matrices and their inverses are listed in Appendix B. It
is easily seen that

QS TWQ ! = 2rk i 1k (4.1)
Q' T'®Q ! =r¥irk (4.2)
QIT"™Q" ! = 2rf L r¥farkirf (kK =1-12) (4.3)

where the symbol —.k represents the direct sum of irreducible representations.
Pre-multiplying and post-multiplying Eq. (2.11) by

QS . . QS71

QP . and . Qé71 X
. QH . . QH71
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and using Egs. (4.1)—(4.3), the matrix of coefficients Eq. (2.11) satisfies

r“p =pr* (4.4)
where
r=ors s rs s s fors S ork 4k (4.5)
S t t S—1
D= Q P f . Q P—1 4.6
QH d jt b . . QH—]

Eq. (4.4) is of the form that admits application of Schur’s lemma. The sub-matrices of D are partitioned
consistent with the irreducible representations. A direct comparison of the corresponding terms of matrices
is given in Appendix C. It is seen that some constants vanish and others satisfy linear equations. Twenty five
non-vanishing independent elastic and dielectric constants found are given by

Cll = Cx, C12,C13 = C23, €33,C44 = Cs5, Ces = (C11 — C12);

as, a1y = axn; fia = —f55 Js = —js9, Jia = —jar, ji15 = —Jja;
dyz,diy = dy1, diz =dy, dy =ds, di =dp,

dsy = dss, day = dys, dge = dog = di| — dya;

by3, b1y = by, by = by, by = by, bss = bes, bas = b7,

bgg = bog = by — b12; bsy = bey

The number of independent elastic and dielectric constants with no symmetry and those belonging to
Dy(622) symmetry class are listed in Table 3.

The constitutive equations and the non-vanishing independent material constants are explicitly shown in
Table 4.

Table 3
Number of independent constants in coefficient matrices
Matrix No symmetry Dg symmetry
a 6 2
b 45 7
c 21 5
d 54 7
f 18 1
i 27 3

Total 171 25
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Table 4
Constitutive equations for elastic dielectrics in Dg(622) class

Sll S22 S33 S23 S31 SIZ Pl PZ P3 Hll l_122 1_133 H23 l_132 H31 l_113 HIZ H21

ol NS

033 . . .
023
031
012

-LE1 . . . . . . . . . . \\ . .

- E, . . . \ . \ . . R{.

-LE3 . . . . . . . . . . .

€ . . . . . . .

t5%) >< I . . . . . . o\

€33 PRSI, . . . . . .

€23

€32

€31

€13

€ . . . . . . . e

€71 . . . . . I . . .
zero element ® g =cn - con

. non-zero independent element ~— non-zero equal element
«—+ clements equal and opposite in sign -+ clements equal and dependent

We observe that in the natural state of elastic dielectric when there is no symmetry the number of
material constants equals 171. For the transversely isotropic elastic dielectrics of Dg(622) class the number
of material constants is reduced from 171 to 25.

Appendix A

Indexing scheme for c;; and f,,; (m =1,3):

@y), (k1) 11 22 33 23,32 31,13 12,21
1

Indexing scheme for by, juu (m =1,6):

(i), (k) 11 22 33 23 32 31 13 12 21
1
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Indexing scheme for dy;;:

8781

(k1) 11 22 33 23 32 31 13 12 21
1 2 3 4 5 6 7 8 9
@@y) 11 22 33 23,32 31,13 12,21
1 2 3 4 5 6
Appendix B

The matrices Q°, Q, Q™ which transform the vectors S, P, IT to their linear combinations and form the

basic quantities for the irreducible representations and their inverses are listed as:
T r.

1 1
2 2
L % -}
1 -
o = B . O = | 7
2 -1
L1 -1 _ L 3 _
i 1 1
QP: 1 , QPfl_ 1 ,
-1 1
- 1 : o
1 1 :
1 -1 1 -
1 1
o = 1 . ol 1
1
-1 -1
1 1 3
(1 -1 | i -3
Appendix C

N—= =

D=

[SIE

The six sub-matrices of matrix D in Eq. (4.4) are partitioned consistent with the irreducible represen-
tations in I' and comparison of corresponding elements and application of Schur’s lemma leads to con-

straints on the elastic and dielectric constants. The details are as follows:
(1) The matrix Q%cQ’':

Let

* * * *
i1 €1 C3 Oy
* * * *
ckoc c c

¥ SayS-1 _ | € € Gz Oy

¢ = Q CQ - ot C* ct C*
31 G C33 Cn
* * * *
Cy Cpp Cy3 Cy



8782 K. L. Chowdhury | International Journal of Solids and Structures 38 (2001) 8773-8785

where ¢, c],, ¢35, ¢5, are 1 x 1 matrices; cj5, cjy, €35, €5, are 1 x 2 matrices; c5, ¢3,, €4y, Cyp are 2 x 1 matrices;
Ci4, Caz» C53,Cay are 2 x 2 matrices which can be written in terms of elements of 6 x 6 matrix c.
From Eq. (4.4), we derive

FKCU FKclz FKCH FKCM CT1F11< CTzrlf CT3F15< CT4F16<

I'icy TIycy TIicy Incy - I I s Gl (C.1)
FKC31 FKczz FKC% FKC34 - C§1F11< C’3€2F11< C§3F15< C§4F16< '
FKC41 FKC42 FKCM F§C44 Cerlf cjzflf Cc’;3ﬂ5< CZ4F1<><

Comparing the corresponding terms from Eq. (C.1) and applying Schur’s lemma, we find the following
results.

(1) ¢y, ¢y, €5, ¢35, are 1 x 1 non-zero matrices.

(i) ¢35, ¢, are 2 x 2 matrices of the form A4 [ (l) (”, A is a constant.

(iii) All other matrices in ¢* vanish.

The system of linear equations derived from Eq. (C.1) can be solved and leads to five independent
constants:

Cll =Cp, C€n,C13 =Cx3, C33,C44=Css,  Ce6 = (C11 — C12)

(2) The matrix Q”fQ5"!

Let

* _ OPfOS~! — fl*l fi*z f1*3 f1*4:|
@t [ E

where f}, /15 are 1 x 1 matrices; f5, fi; are 1 x 2 matrices; f5, f5, are 2 x 1 matrices; f5;, f5, are 2 x 2
matrices which can be easily written in terms of elements of 3 x 6 matrix f.
From Eq. (4.4), we derive

K rx K rx K rx K £x + K + K x K + K
FZ 11 FZ 12 FZ 13 F2 14 — fllrl leFl f‘l3r5 fl4F6
FIS(f 2*1 r 15<-f2*2 F15<-f2*3 F15<f 2*4 f 2*1 r [1< f 2*2 r 11( -f2*3 r é( -f2*4 Flg

Comparing the corresponding terms of Eq. (C.2) and applying the Schur’s lemma, we find the following
results.

(C2)

(i) There is only one non-zero matrix f;; and it is of the form 4 [ (1) (” .
(ii) All other f*’s vanish.

The system of linear equations derived from (C.2) leads to only one independent constant:
Jia=—fas.
(3) The matrix Q”aQ”™!
ay, a’fz}

Leta*:QPaQ}”:{* .

dy Ay
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where
* a3 a  dap
ay, =axn; a, = lay anl; ay = ;o ah, =
11 ’ 12 [ ] 21 ann ’ 22 an an
Eq. (4.4) gives

K % K %
lrzan I'yaj,

K % K x
I'say, TI'sas,

(C.3)

* K x K
anly  apI's
* K x K

ayly  a5I's

Comparing the corresponding terms in Eq. (C.3), and applying Schur’s lemma, we obtain

(i) g}, is an independent non-zero constant.

(ii) a3, is a matrix of the form 4 [ (1) (”

The 3 x 3 matrix a contains only two non-zero independent constants:

ass,dp; = dxn
(4) The matrix QjQ"!
Let j = QPle'[—I _ {]11 Jiz 113 1.14 Jis ]16:|
Jar J2 Jaz Jaa Jas Jae
where ||, ji,, Ji; are 1 x 1 matrices; ji,, jis, jic are 1 x 2 matrices; j3,, j5,, j5; are 2 x 1 matrices; j5,, j3s, j
are 2 x 2 matrices which can be written in terms of elements of 3 x 9 matrix j.
From, Eq. (4.4), we derive

e K P K P K e K o K e K
Jnlt TRl Iy AaIs Jisls Jiels

I T It sl sals  jssTs  jaelh

Iy Iy Do Do Tojis Tojis | _
ISjy Tsin T5is TSis Tshs T5i

(C4)

Comparing the corresponding terms in (C.4) and using Schur’s lemma, we find

(i) ji; is a 1 x 1 non-zero matrix. 0
(ii) j54, j35 are 2 x 2 matrices of the form A {0 1]
(iii) All other j* matrices vanish.

This leads to three independent constants:

Jis = —Jj3;  Jua = —jus  Jis = —jx

(5) The matrix Q7dQ*™!
[diy diy diy dyy]
dy dy dyy dy
dy oy dyy d
dy dy dy di
dy dyy dyy d
dgy dgy dgz dgy |

Let d* = Q"dQ% ! =
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where d},, d},, d;,, d5,, d3,, d3, are 1 x 1 matrices; d};, dy,, d3;, d>,, ds;, dy, are 1 x 2 matrices; dj,, d,, d2,, ds,,
* * 1 . * * * % * % 3 1 1 1
d¢,, di, are 2 x 1 matrices; d43,.d44, ds;, dz,, d, d¢, are 2 x 2 matrices. These matrices can be written in terms
of the elements of 9 x 6 matrix d.
From Eq. (4.4), we derive

[[Vdiy I'idiy I'idyy Tidy]  [diIy diplY dils di I ]
Iid, Iid, I'idy Iid, dyI dplY IS dy, TG
Pydy Tidiy Iydy Didyy | |\ dyly dply diIs diTs )
[Sdy ISdy, ISdy TSdy, Ayl dpl'Y IS dyIg
[ids, ISdy, Iidyy I5ds, dy Iy dlY di IS diIg
| Fedgy Ted, Tedg Tdg] | d Iy dol'y  dil's  dglg |

Comparing the corresponding terms in (C.5) and applying the Schur’s lemma, we find that

(i) dj3, dz;, di, are 2 x 2 matrices of the form 4 0 1

() dy,, d,, d5,, d5, are 1 x 1 non-zero matrices. [1 0]
(iii) All other matrices in d* vanish.

This leads to seven independent non-vanishing constants
dy3; dy) = dy; dis = dys; di +da; da = dps; dsa = des; dys = dog = diy — dia
(6) The matrix Q"bQ""

(b1 b, biy by bis b
by by by by by by
by by by by by by
by b by bl by by
b b5, by by bss by
by be bsy bey bes b |

Let b* = Q"bQ"' =

where

* * * * * * * * * M .
bi,, b1y, bl5, b5, b5y, B35, b3, b3y, B35 are 1 x 1 matrices;

Bias bis, Blg, By, Bisy g, by, s, b are 1 x 2 matrices;

* * * * * * * * : .
i1y Dy By bsi, by, b bey bisy, by are 2 x 1 matrices;

* * * * * * * * * : .
by bas, blg, bssy bs, big, bey, bes, b are 2 X 2 matrices :
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Eq. (4.4) gives

PRy TSb, TRb, DS TR, TR [BWEE RIS BrE bt bLrt bt
by [y, ISby Py, Dy e | bl bl burs bt brt st
Piby, TSby TSby Ty, Db Dibig| | 6yr% b brt mrt brs wrs
by Ty, ISy by Dby b | (Bl bl bl bt ot b
by Ty, ISby Db, D e | [byrs ourt oIS srt ot bt
[ rfy rSb, riby Dby I Db Loprt brt brt et brt brt

(C.6)

Comparing the corresponding terms in Eq. (C.6) and applying the Schur’s lemma, we find that

] * * * * * 3
(1) by, b1y, b3y, b3y, B35 are 1 x 1 non-zero matrices. 0
(il) b3y, bys, by, bis, by are 2 x 2 matrices of the forms 4 0 1

(ii1) All other 5* vanish.

This leads to seven independent non-vanishing constants:
b33, b1a = ba1, b1y = by, by1 = by, bss = bes, bas = b7, bgg = bog = b1y — b1a; bsa = be;
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